

{In Archive} Fw: Updates from Waste Management

Stephen Tyahla to: Arlene Kabei

Cc: Steve Armann

From: Stephen Tyahla/R9/USEPA/US
To: Arlene Kabei/R9/USEPA/US@EPA,
Cc: Steve Armann/R9/USEPA/US@EPA

Archive: This message is being viewed in an archive.

Arlene, in response to your note looking for numbers for 18th, this is the only note I saw from Kathy with data (from WM).

Back on leave, picking up kids.

Stephen F. Tyahla, P.E.,CHMM
Project Manager, RCRA Corrective Action Office
Waste Management Division
U.S. EPA Region IX
75 Hawthorne Street (WST-5)
San Francisco, CA 94105
Ph. 415.972.3466 / Fax 415.947.3533
tyahla.stephen@epa.gov

[This email, including any attachments, may contain non-public, privileged and/or confidential information solely intended to be conveyed to the designated recipient(s). If you receive this email and are not an intended recipient, please delete this email and its attachments immediately. The unauthorized use, dissemination, distribution, or reproduction of this email and its attachments is strictly prohibited by law.]

-----Forwarded by Stephen Tyahla/R9/USEPA/US on 01/24/2011 02:29PM -----

To: Arlene Kabei/R9/USEPA/US@EPA From: Katherine Baylor/R9/USEPA/US

Date: 01/22/2011 09:17PM

Cc: Steve Armann/R9/USEPA/US@EPA, Stephen Tyahla/R9/USEPA/US@EPA, Rich

Vaille/R9/USEPA/US@EPA, Steve Wall/R9/USEPA/US@EPA, Bret Moxley/R9/USEPA/US@EPA

Subject: Fw: Updates from Waste Management

All -

This is very timely information from Waste Management, including some of the numbers (bags of trash picked up, gallons of water treated/discharged, etc.), and a clearer explanation of what's been done to date and their path forward. We are meeting w/ WM at 10 AM tomorrow, so I will try to get some clarification on some of this (the pumping log needs more clarity). Additionally, given the confusion we had yesterday on the draft AOC, we need a proper site map (.pdf) that shows the location of all the cells and the location/status of the drainage network. Ideally, I'd also like to get an electronic copy of their most recent aerial photo (the GoogleEarth image dates to 2008).

Kathy

Katherine Baylor, P.G. U.S. Environmental Protection Agency 75 Hawthorne Street, WST-5 San Francisco, CA 94105 415-972-3351

----- Forwarded by Katherine Baylor/R9/USEPA/US on 01/22/2011 09:03 PM -----

01/24/2011 02:31 PM

Waimanalo Gulch Sanitary Landfill Stormwater Management Update and Contingency Plan 1/21/2011

Following the recent major storm events, Waste Management of Hawaii (WMH) has assessed and evaluated its stormwater control systems for effectiveness. Below is an update on ongoing measures being taken to prevent future damage to the site.

- 1) Ensure that we are able to control the stormwater with the 36" temporary under-drain system that originates from the upcayon **construction area**. Note that the Western Drainage Bypass Channel is designed to control the stormwater from the upcanyon watershed area, while the 36" temporary under-drain system was design to control stormwater in the expansion construction area during construction.
 - The effectiveness of 36" inlet structure for the upcanyon temporary drainage system has been restored and improved. The area immediately surrounding the inlet structure has been re-graded and armored with large boulders to prevent high sediment loading from clogging the inlet. A diversion berm immediately downstream of this diversion structure has been reinforced and re-built to further direct any stormwater into the inlet structure.
 - The area surrounding the future Cell E-8 is being excavated down to the relative elevation of the 36" inlet structure. This effort will help to create stormwater retention, dissipate stormwater velocities, and drop out sediment as it moves from the upper reaches of the construction area towards the 36" inlet structure. This effort has been ongoing since 1/18 and will be complete by 1/31.
- 2) Establish a functioning Western Drainage System.
 - In order to establish a functioning Western Drainage System, a functioning upcanyon diversion structure must be in place to divert the upcayon watershed stormwater into the box culvert and fiberglass piping system. Additionally, the box culvert invert that originates at the diversion structure must be connected to the 78" fiberglass piping located on the upper bench above Cell E-6. WMH's contractor continues to work double shifts on these two fronts. A functioning Western Drainage System will be in place within 2 weeks, barring any additional large rainfall events that would prevent this work from being safely completed. Note that concrete work on this Western Drainage System will be on going after this 2 week period.
- 3) Temporary containment berm directly south of Cell E6
 - This berm was constructed by WMH's contractor during the 1/13 storm to contain large stormwater flows originating from upcanyon and prevent a catastrophic discharge to the area surrounding Kahe Power Plant. This berm was able to safely contain a storm with a return interval of more than 100 years. This berm will remain in place until Phase 3 of the West Berm is constructed. Phase 3 of the West Berm will consist of approximately 100,000 cy of compacted rockfill overlying this area and the E6 sump area where stormwater is currently impounded. Construction of Phase 3 of the West Berm will thus prevent any future ponding of water in this area, as its top deck will reside at an elevation of 450' msl. The current waste elevation in Cell E-6 is approximately 425' msl.

4) Remove the impounded stormwater from Cell E6

Since pumping the impounded stormwater into the 72" fiberglass piping manhole adjacent to Cell E6 ceased on 1/16, WMH and the City and County of Honolulu (CCH) have been pumping the water out for disposal at various waste water treatment plants (wwtps) across the island. This has been a 24-hour operation since 1/16. Since 1/16, approximately 1 million gallons has been disposed at the wwtps. At this time, it is estimated that an additional 1 million gallons must be removed in order to gain access to the E6 sump riser pipe network which is located in the relative center of the impounded water. By current estimates, this will take an additional 6-7 days. This sump riser piping is still underwater as of 1/21. Once the sealed flange plates at the top of the riser network are visible, there will still be a considerable amount of impounded water surrounding the sump riser pipes. WMH and its construction contractor will need to create access to these riser pipes by constructing a fill 'bridge' out to them using rock and soil. Once we have access, we will re-establish the E6 sump pumping system that was in place and functioning prior to the large storm events. Once this system is reestablished, it will run 24 hours per day until the liquid levels are drawn down to prestorm levels, and ultimately until we are below our compliance elevation for the sump.

5) Restore the efficiency of the sedimentation basin

- The sedimentation basin has been inundated with sediment from 3 consecutive large rainfall events. This sediment inundation has clogged the perforations on the riser pipes and the sand filtering system on the floor of the basin, causing the water still contained in the basin to attenuate very slowly towards the outfall. This sediment needs to be removed to restore the efficiency of the sedimentation pond to levels observed prior to the 3 consecutive stormwater events.
- In order to remove the sediment, the impounded water in the pond must first be removed. While WMH was initially allowed to remove the water from the pond and apply it to the upper slopes of the landfill after conversations with EPA and HDOH officials on 1/16 and 1/17, subsequent conversations with HDOH have indicated otherwise. Restoring the efficiency of the sedimentation basin in contingent upon HDOH allowing WMH to remove the water from the pond and apply it to other areas of the landfill primarily for dust control and irrigation purposes. The other option to remove this impounded water would be to pump out the water and haul it to a wwtp for disposal. However, this would be a very time consuming and costly option.

GOODFELLOW BROS., INC. - GENERAL CONTRACTOR-

ABC-7046

Friday 1-14-11 = 2.283 MGal 1.8000 MGal 1.8000 MGal 1.16-11 = N/A U.1083 Mgal Gun

6705 Waimanalo Gulch Landfill

PUMP LOG

Total of Million
13.9 Million
pullons

Enclosed 8" Pump

1026

Pumping commenced into HOBAS manhole on 1/13 at 7:00 pm Pumping ceased on 1/16 at 10:00 am

B" Erichosed 8" Frim P

PUMP NO:

6705 Waimānalo Guich Landfill - PUMP LOG DATE:

Efficiency Discharge Length 20 Punpanc 701 101 101 32 050h Suction Length 707 20 2 フマト向か 157.50 50 477,500 000'537'2 Discharge Head 000'052' 162,000 07-2/6,000 02-02 1 1 ω 0 m SERVE P Pumps SIAZ LI BOD Suction Head ,01 2400 0 2700 6 PM 2050 1150 7100 52 Reset 1500 1200 1750 1750 1675 De SPEX RPM 1150 1500 0661 1675 1960 9:30am 3.30pm 5.00am 1026 500p BBP-P ナのオ 115 Stop 32 5 5 7 OK AGIR 9:30am 1 / B :00 pm 3308m 700 pm 4.5 h/3 HR S 500 am 10 Mrs .75 Start 000 5 7 7 K, 13 14 15 1.6 17 OW? 200

Friday

1-14-

メルナ

6705 Waimanalo Gulch Landfill - PUMP LOG

PUMP NO:

Efficiency 3/0/10/18 Discharge Length ちつろ Suction Length A P 40 Sick ting 1,800,000 140 +S Discharge Head 0 AC Suction Head 2500 Armer A DATE: Cpm 5 18 1200 RPM # 11:00pm 1700 RPM 1100pm Stop TOH Z B 11:00am Start IKS IKS 9 g 10 11 12 13 14 15 16 17

QU)

GOODFELLOW BROS., INC. - GENERAL CONTRACTOR-

6705 Waimanalo Gulch Landfill

PUMP LOG

8" Trailer Open (Not enclosed)

1062

g" granter

6705 Waimanalo Gulch Landfill - PUMP LOG

DATE:

7.901

PUMP NO:

1-14-1

Friday

Efficiency Discharge Length 100 120 SO ,05 PM Suction Length No pamping 5740 Discharge Head 1,425,000 090'529 750,000 77-02-Oa (COULD NOT SET FUMP Pumps 22 AR 52 PE Suction Head 0052 2500 G PM Reset (700) 1700 RPA 1200 1700 RPM. 9:30am 3:30pm 5 JOAN Stop HOH 49 79 9:30am 5:00am 12:00am 2 Same Shrs HRS Start 7 inniby 2 7 **®** 딤 12 73 14 ή 16 17 Owi)

(B)

Bu Trailer open

6705 Waimanalo Gulch Landfill - PUMP LOG

DATE:

PUMP NO:

Saturday

TO 500 A Efficiency Discharge Length remains Lin Suction Length Discharge Head クタ Suction Head pump used RPM 5 Norden Billen 1 2991 Stop Start 10 14 15 16 00 g 1 12 13 17

/ M

GOODFELLOW BROS., INC. - GENERAL CONTRACTOR-

ABC-7046

12" SKid Mounted Pump

1111

12" Skid Mounted

PUMP NO: | | |

(1)[1] 6705 Waimanalo Gulch Landfill - PUMP LOG

Fridan

DATE:

Efficiency Discharge Length 、つて 107 2 Suction Length Arive @ Jobaite + get up ,01 20, 20 1371 000 Just 000 05'664'600 Discharge Head 288,000 79,500 GAL 07. M Suction Head 5300 GPM 5100 90 h h 9 10 2200 200 7,000 1000 Equivelent R PM RPM 1080 100 36% 1000 pm 12:00 Am 800 Pm 35% 3 is p.m 424 大名が 330 pm 404 9.30am 315pm 330 pm OK TOOR AND 25hrs 4.5 hrs 547 Start 2 my 11 12 3 15 16 14 17

12" SKid Minnted

6705 Waimanalo Gulch Landfill - PUMP LOG

DATE:

11-51-

Efficiency Discharge Length 00 IT RAN AL 00 Suction Length 130 0 ~ Total 4,833,000 Discharge Head 1,650,000 000'051 2,646,000 987,000 GAL ✓ ر ا 4 Ś ノナ Pup was Running when I STARTED Suction Head 2500 7500 4900 GPM 35 4700 B 52 0007 2000 Egap RPM 2000 1000 RPM 10501 050) 050) 1020 Ar 2000 Rem w805:2 5:00 pm 12:00am 9:00am Maden イロオ Stop 49 12 , 7h. 1 12:0tan 11:00cm cl:00pm 5000m 12:00mm 3,5 hrs PUMP NO: Start 9hr9 75 ンとこ 7 \Rightarrow 5 14 16 17

1

reset rado aw) 6705 Waimanalo Gulch Landfill - PUMP LOG DATE: $S_{\mathcal{H}}$ D

Efficiency Discharge Length Suction Length 1-16-1) 130 Discharge Head 1, 506,000 5 Suction Head 2500 OPM 35 10:00am 2000 K-PM RPM 1090 Stop HOY 11, 12,00mm PUMP NO: Start 10 7 11 12 13 15 16 14 17 ന 4 Ŋ 9 7 ∞ φ

Method	Analyte	Unit	Screening Criteria	Benchmark Level	UPCANYON	CULVERT	OCEAN OUTLET	OCEAN EAST	OCEAN WEST
1664A	HEM (Oil and Grease)	mg/L	15	15	3.7 J	5.1	4.5 J	4 J	3.5 J
40CFR136A 625	Alpha-Terpineol	mg/L	0.016	NA	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	Benzoic acid	mg/L	0.071	NA	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
	p-Cresol	mg/L	0.014	NA	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	Pentchlorophenol	mg/L	0.02	NA	< 0.019 *	< 0.021 *	< 0.023 *	< 0.021 *	< 0.02 *
	Phenol	mg/L	0.015	1.0	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	Arsenic	mg/L	0.36	0.16854	< 0.015	< 0.015	< 0.015	< 0.015	0.0044 J
	Cadmium	mg/L	0.003	0.0159	< 0.00045 *	< 0.00045 *	< 0.00045 *	< 0.00045 *	< 0.00045 *
	Calcium	mg/L	NA	NA	11	24	190	370	370
	Iron	mg/L	1.0	1.0	41	8.6	14	20	18
	Lead	mg/L	0.029	0.0816	< 0.009	0.0034 J	0.0061 J	0.0057 J	0.0058 J
EPA 200.7 Rev 4.4	Magnesium	mg/L	NA	0.0636	11	13	510	1,100	1,100
	Potassium	mg/L	NA	NA	6.1	7	200	480	470
	Selenium	mg/L	0.02	0.2385	< 0.015	0.0078 J	< 0.015	< 0.015	0.0064 J
	Silver	mg/L	0.001	0.0318	< 0.00093 *	< 0.00093 *	< 0.00093 *	< 0.00093 *	< 0.00093 *
	Sodium	mg/L	NA	NA	51 B	73 B	5,000 B	11,000 B	10,000 B
	Zinc	mg/L	0.022	0.117	0.058	0.017 J	0.037	0.049	0.047
EPA 245.1	Mercury	mg/L	0.0024	0.0024	< 0.0002	< 0.0002	< 0.0002	0.000033 J	< 0.0002
EPA 7196	Hexavalent Chromium	μg/L	16	NA	< 10	< 10	< 10	< 10	< 10
EPA 365.1	Phosphorus, Total	mg/L	NA	2.0	0.58 B	0.38 B	0.33 B	0.34 B	0.22 B
MCAWW 350.1	Ammonia	mg/L	4.9	19	0.17	0.11	0.055 J	0.074 J	0.053 J
MCAWW 353.2	Nitrate-Nitrite as Nitroge	mg/L	NA	0.68	3.2	2.9	1.9	0.17	0.13
EPA Total Nitrogen	Nitrogen, Total	mg/L	NA	NA	4.1	4.8	2.8	0.41	0.77
EPA 405.1	BOD (5-Day)	mg/L	NA	30	< 2	8.91	3.48	< 2	< 2
MCAWW 410.4	Chemical Oxygen Deman	mg/L	NA	120	29	45	160	410	450
SM 2540D	Total Suspended Solids	mg/L	100	100	190	57	320	340	320
MCAWW 300.0A	Bromide	mg/L	NA	NA	0.16 J	0.73	32	67	67
	Chloride	mg/L	NA	860	61	95	9,600	19,000	19,000
	Sulfate	mg/L	NA	NA	27 B	45 B	1,300 B	2,800 B	2,700 B
SM 2320B	Bicarbonate Alkalinity	mg/L	NA	NA	31	77	110	120	120
	Carbonate Alkalinity	mg/L	NA	NA	< 5	< 5	< 5	< 5	< 5
	Total Alkalinity	mg/L	NA	NA	31	77	110	120	120
Bac-T	Total Coliform	MPN/100 mL			500	> 1,600	> 1,600	> 1,600	170
	E. coli	MPN/100 mL			74	< 2.0	3.6	3.6	< 2.0
Field Method	рН	SU	5.5-8.0	6.0-9.0	8.46	8.14	8.13	8.06	7.92

Note:

Bold	exceed screening criteria
<	not detected above the reporting limits
>	greater than
*	not detected above the method detection limits
μg/L	micrograms per liter
mg/L	milligrams per liter
В	compound was found in the blanks (0.221 J mg/L for Sodium, 0.0115 J mg/L for Total Phosphorus; and 0.245 J mg/L for Sulfate)
BOD	biochemical oxygen demand
HEM	n-hexane extractable material
NA	no limitation at this time
J	estimated result is less than the reporting limit but greater than or equal to the method detection limit
SU	standard unit

WGSL Storm Cleanup

debris/typical	ocean	trash	(No	οf
ucui is/ typicai	Occan	ti asii i	INO.	Οı

Date	Location	40 gallon bags)	medical waste
14-Jan	WGSL Storm Drain Outlet	20	1 gallon bucket full
15-Jan	WGSL Storm Drain Outlet	10	2 syringes, 1 vial
16-Jan	White Plains Beach	5	1 syringe
16-Jan	WGSL Storm Drain Outlet	0	1 syringe
17-Jan	White Plains Beach	2	2 syringes, 1 vial
17-Jan	White Plains Beach/Nimitz Beach	1	2 syringes
18-Jan	Pokai Bay	0	0
18-Jan	White Plains Beach/Nimitz Beach	4	0
18-Jan	White Plains Beach/Nimitz Beach	10	2 syringes
19-Jan	White Plains Beach/Nimitz Beach	0	1 syringe
19-Jan	Pokai Bay	0	0
19-Jan	Kahe Beach/Tracks/WGSL Discharge/HECO Discharge	0	1 syringe, 1 vial
20-Jan	Kahe Beach/Tracks/WGSL Discharge/HECO Discharge	0	0
20-Jan	Ko'Olina (Paradise Cove)	0	1 syringe
20-Jan	White Plains Beach/Nimitz Beach	0	0
21-Jan	White Plains Beach/Nimitz Beach	0	0
21-Jan	Kahe Beach/Tracks/WGSL Discharge/HECO Discharge	0	0

From: "Yamada, Stuart H" <stuart.yamada@doh.hawaii.gov>

To: Katherine Baylor/R9/USEPA/US@EPA, Bret Moxley/R9/USEPA/US@EPA

Date: 01/22/2011 01:27 PM

Subject: FW: Updates from Waste Management

Aloha Kathy & Bret,

As there was no indication that Waste Management had sent this to either of you, I thought it might be helpful for you to have this information.

Have a great weekend! Stuart

From: Yamada, Stuart H

Sent: Saturday, January 22, 2011 10:58 AM

To: Ho, Kathleen; 'Edward G Bohlen/AG/StateHiUS@DOHMAIL'; Chang, Steven Y; Gill, Gary L.; Ichinotsubo, Lene K; Kurano, Matthew; Miyashiro, Thomas; Okubo, Watson T; Ruiz, Jose A; Seto,

Joanna L; Tsuji, Michael; Wong, Alec Y

Subject: FW: Updates from Waste Management

FYI. I have not opened the attachments but the file names would indicate items that are primarily of interest to CWB.

From: Frey, Jesse [mailto:JFrey@wm.com] Sent: Friday, January 21, 2011 6:03 PM

To: Yamada, Stuart H; mlanuevo@honolulu.gov

Cc: Whelan, Joseph; Lottig, Justin

Subject: Updates from Waste Management

Stuart and Manny,

Please see the attached documents per your request. The documents include an update on stormwater contingencies, a record of our pumping logs while we were pumping impounded water from the E6 area into the stormwater system, a summary of beach cleanup activity and findings, and a summary of the stormwater analytical results from the 1/13 sampling event. Please distribute as necessary.

Jesse Frey

Engineer

Waste Management of Hawaii

92-460 Farrington Hwy.

Kapolei, HI 96707

Ph: 808-250-0574

Fax: 808-668-1366

<<wgsl sw update and contingency plan.pdf>> <<wgsl pumping logs.pdf>> <<Beach Cleanup Summary.pdf>> <<Summary Table stormwater_1_14_2011.pdf>>

Waste Management recycles enough paper every year to save 41 million trees. Please recycle any printed emails.

(See attached file: wgsl sw update and contingency plan.pdf)

(See attached file: wgsl pumping logs.pdf)

(See attached file: Beach Cleanup Summary.pdf)

(See attached file: Summary Table stormwater_1_14_2011.pdf) wgsl sw update and contingency plan.pdf

wgsl pumping logs.pdf Beach Cleanup Summary.pdf Summary Table stormwater_1_14_2011.pdf